F (row) = size of input window, in frames ; NOTE: GB/GBC/GBA ~= 59.7275 fps σ (col) = standard deviation of input timing, in frames Assumes a calibrated timer setup with an offset that hits in the exact center of the desired window (mean = 0). Modeled with a normal distribution for a few arbitrary levels of precision, with 60 fps inputs in mind (std dev = σ; lower std dev = more precise). I used to be closer to σ = 1.25 with my input timing, then improved to 1.00, and now am somewhere between 0.90 and 0.95. For 30 fps games, you would halve the σ from 60 fps games to get your precision level (or, equivalently, keep the same σ and double the size of the input window). Excel command: =TEXT(ROUND(NORM.DIST($A2/2,0,B$1,TRUE)-NORM.DIST($A2/-2,0,B$1,TRUE), 5), "0.00000") ***EDIT: A (work-in-progress) tool for calibrating manip offsets and calculating one's precision level can be found here: https://plnkr.co/edit/w0hvCuTtvJVC6qRAZhGE?p=preview. =~=~=~=~=~=~=~=~= F \ σ 0.64 0.80 0.90 1.00 1.25 1.5625 1/256 0.00243 0.00195 0.00173 0.00156 0.00125 0.00100 1/128 0.00487 0.00390 0.00346 0.00312 0.00249 0.00199 1/64 0.00974 0.00779 0.00693 0.00623 0.00499 0.00399 1/32 0.01948 0.01558 0.01385 0.01247 0.00997 0.00798 1/16 0.03894 0.03116 0.02770 0.02493 0.01995 0.01596 1/8 0.07779 0.06227 0.05536 0.04984 0.03988 0.03191 1/4 0.15485 0.12416 0.11046 0.09948 0.07966 0.06376 1/2 0.30393 0.24534 0.21882 0.19741 0.15852 0.12712 1 0.56534 0.46803 0.42149 0.38292 0.31084 0.25103 2 0.88183 0.78870 0.73348 0.68269 0.57629 0.47783 3 0.98091 0.93921 0.90442 0.86639 0.76986 0.66294 4 0.99822 0.98758 0.97373 0.95450 0.89040 0.79945 5 0.99991 0.99822 0.99453 0.98758 0.95450 0.89040 6 1.00000 0.99982 0.99914 0.99730 0.98360 0.94514 7 1.00000 0.99999 0.99990 0.99953 0.99489 0.97491 8 1.00000 1.00000 0.99999 0.99994 0.99863 0.98953